Foto: 3DMM2O

3D Printing

3D-Druck kleinster poröser Strukturen mit Fotolack

Fotolack für den Zwei-Photonen-Mikrodruck ermöglicht Herstellung dreidimensionaler polymerer Mikrostrukturen mit Hohlräumen in Nanogröße.

Forschende des Karlsruher Instituts für Technologie (KIT) und der Universität Heidelberg haben einen Fotolack für den Zwei-Photonen-Mikrodruck entwickelt, mit dem erstmals dreidimen-sionale polymere Mikrostrukturen mit Hohlräumen in Nanogröße hergestellt werden können. Im Fachblatt Advanced Materials berichten die Wissenschaftlerinnen und Wissenschaftler des gemeinsamen Exzellenzclusters 3D Matter Made to Order, wie die Porosität im Druckprozess gesteuert werden kann und wie sich dies auf die Lichtstreuungseigenschaften der Mikrostrukturen auswirkt. (DOI: 10.1002/adma.202002044)
Fotolacke sind Drucktinten, mit denen in der sogenannten Zwei-Photonen-Lithographie kleinste Mikrostrukturen 3D-gedruckt werden können. Während des Drucks wird ein Laserstrahl durch den zunächst flüssigen Fotolack in alle Raumrichtungen bewegt. Hierbei härtet der Fotolack lediglich im Fokuspunkt des Laserstrahls aus. Nach und nach können so komplexe Mikrostrukturen aufgebaut werden. In einem zweiten Schritt wäscht ein Lösungsmittel jene Bereiche aus, die nicht belichtet worden sind. Übrig bleiben komplexe Polymer-Architekturen im Mikro- und Nanometer-Maßstab.

3D-Mikrostrukturen aus porösem Nano-Schaum

Die Zwei-Photonen-Polymerisation – beziehungsweise der auf diesem Verfahren basierende Zwei-Photonen-Mikrodruck – wird seit einigen Jahren intensiv erforscht – im Hinblick etwa auf die Herstellung von Mikrooptiken, von sogenannten Metamaterialien oder von Mikrogerüsten für Experimente mit einzelnen biologischen Zellen. Um das Anwendungsspektrum zu erweitern, bedarf es neuer druckbarer Materialien. Hier setzen die Wissenschaftlerinnen und Wissenschaftler des Exzellenzclusters 3D Matter Made to Order (3DMM2O) des KIT und der Universität Heidelberg an: „Mit bisherigen Fotolacken war es lediglich möglich, transparente, glasartige Polymere zu drucken“, erläutert Frederik Mayer, Hauptautor der Studie und Physiker am KIT. „Unser neuer Fotolack ermöglicht es erstmals, 3D-Mikrostrukturen aus porösem Nano-Schaum zu drucken. Dieser Polymer-Schaum weist Hohlräume einer Größe zwischen 30 und 100 Nanometern auf, die mit Luft gefüllt sind.“

Weißes Material mit Fotolack drucken

„Einen Fotolack für den 3D Laser-Mikrodruck, mit dem man ‚weißes‘ Material drucken konnte, gab es bislang nicht“, stellt Frederik Mayer fest. Wie in einer porösen Eierschale bewirken die zahlreichen winzigen Luftlöcher in den porösen Nano-Architekturen, dass diese weiß erscheinen. Einfach weiße Partikel in einen herkömmlichen Lack zu mischen, wäre keine Lösung, denn während des Drucks muss der Fotolack für den (roten) Laserstrahl transparent sein. „Unser Lack“, so Mayer, „ist vor dem Drucken transparent, doch die gedruckten Objekte sind weiß und weisen damit eine hohe Reflektivität auf.“ Diese Eigenschaft demonstrieren die Forschenden aus Karlsruhe und Heidelberg mit dem Druck einer haarfeinen Ulbricht-Kugel, eines Bauelements der technischen Optik. 

Große innere Oberfläche eröffnet neue Möglichkeiten

Ein anderer Faktor, der neue Möglichkeiten eröffnet, ist die extrem große innere Oberfläche des porösen Materials. Bei Filtervorgängen auf kleinstem Raum, bei extrem wasserabweisenden Beschichtungen oder bei der Kultivierung biologischer Zellen könnte dies einst positiv zu Buche schlagen. Wozu der neuartige Fotolack geeignet ist und wie er bestmöglich anzuwenden ist, konnte in übergreifender Zusammenarbeit von drei der insgesamt neun Forschungsschwerpunkte des Exzellenzclusters beschrieben werden. Anhand elektronenmikroskopischer Scans und optischer Experimente zeigten die Forschenden, wie die Hohlräume in gedruckten Strukturen verteilt sind und wie ihre Formation durch Veränderungen der Druckeinstellungen, vor allem der Stärke der Laserpulse, auch gesteuert werden kann. An den aktuellen Arbeiten im Exzellenzcluster haben Heidelberger Forschende auf dem Gebiet der Materialwissenschaften und Karlsruher Forschende auf den Gebieten Chemie und Physik mitgewirkt.